行业新闻
  • 您现在的位置:首页 > 新闻中心 > 行业新闻 > 开关电源对ADC芯片工作的影响及解决方法

电源对ADC芯片的影响,除了体现在电源抑制比(PSRR)参数上,还表现在,当ADC芯片对输入的模拟信号进行采样、保持、转换时,电源电压、参考地的变化,都会对ADC芯片内部采样电路、比较器等的工作产生影响,使得采集结果出现晃动。因此,一般ADC芯片特别是高精度ADC芯片,都建议最好用质量好的线性电源供电。如果采用开关电源,则需要尽力避免它对ADC芯片产生影响。
图1是一个典型的应用,其中模拟采样用的信号调理电路、ADC和现场模拟信号不隔离,ADC芯片和CPU电源相互隔离。CPU采用控制系统内部电源。而ADC的+5V电源是由+24V电源经过+24V到+5V电源变换而来的。图中左侧部分是典型的串联、降压非隔离型DC-DC变换器的原理框图。设计中,可以根据开关管的开关频率、+5V消耗电流、要求的输出纹波最大值,计算出电感L1、电容C1的合适大小。
为了分析出开关电源对ADC芯片的影响,这里假设信号调理电路及ADC芯片正常运行的耗电是25mA/+5V,对于光耦部分,如果采用6N136、TLP521等三极管输出型的光耦,则当CPU不启动ADC工作时,光耦全不导通,耗电小于1mA;当CPU启动ADC工作时,将有数据输出Dout、数据准备好Ready等信号经过光耦,光耦处于导通状态,为了达到比较高的通讯速率,光耦总耗电需要25mA/+5V左右。这样,+5V负载电流将在25~50mA之间来回变动。正常开关电源设计的输出电流应该2倍于最大负载电流,这里设为100mA,下面将要说明负载电流的变化将极大影响+5V,从而影响ADC采样稳定性。
开关电源的工作原理是,平时Q1的周期性开关动作,再经过L1、C1,得到所需要的输出;而当输出+5V电压发生上升/下降超过一定限度(如几十毫伏),经过采样、反馈后,开关控制电路控制Q1的开关,使得输出电压向+5V回归。在+5V负载比较恒定的情况下,输出+5V的最大纹波,可以根据采样反馈电路工作原理(比如MC34063是通过比较器和锁存器来控制Q1的开关)、开关频率等计算出来。
但如果是图1中带光耦的情况,开关电源的输出不仅供给相对恒定的负载(如信号调理电路、ADC芯片),而且还要供给光耦等数字部分电路,有可能发生最坏的情况是,当开关管Q1正处于上述稳定工作中的关断时刻,光耦突然被ADC导通,此时L1、C1将要提供50mA的负载电流,而平时稳定工作中L1只提供25mA的电流,剩下电流只能从电容C1中获取,使得C1上的电压即+5V电平下降比较大。这将持续半个开关周期,直到开关管Q1打开。如果开关电源的开关频率是100KHz,而ADC芯片数据Dout的通讯频率也是100KHz左右,将引起输出+5V电压频繁波动,造成更大的输出纹波。在示波器上甚至能看到噪声反馈在+24V输入上。
上面只是理论分析的最坏情况,实际应用中,滤波电容等器件的非理想性、PCB布线等等,将使得电源纹波更大,ADC采样结果不稳定。有的微功率型隔离DC/DC,或者如电荷泵器件,只有开关管的周期性开关动作,而没有上述采样、反馈电路,输出更容易受到负载不稳定的影响,使得ADC采样结果更不稳定。
比较好的解决办法
1. 设法降低开关电源的负载变化,因为虽然目前开关电源的工作频率已到几百kHz以上,但开关电源的负载响应时间仍至少要几个μs,低于目前大多ADC采样的速度。比如采用光耦6N137就比6N136好,因为6N137只是静态电流比较大,而它需要的二极管导通电流小,使得电源的负载变化不会很大。或者不把模拟+5V电源接到小功率的开关电源输出上,而接到其它功率比较大的开关电源输出上,避免开关电源输出受到负载变动的影响。同样一个值得注意的问题是,不要使用ADC芯片的Ready、Dout、Din等引脚直接驱动光耦,最好通过光耦驱动电路,使得模拟和数字电源得到很好地相互隔离,避免在光耦开关时,有大的电流越过ADC芯片。
2. 开关电源后加LDO等输出电压纹波小的器件,再供给信号调理电路、ADC芯片,保证模拟电路电源的稳定。
3. 如果在开关电源后加LC滤波,将LC滤波后的电源供给数字部分,此时应该针对不同的负载电流大小,选择相应的L、C数值,必要的时候,要通过一定的计算、仿真及试验来加以确定。电感、电容不能过大,否则难以响应负载(光耦开/关)的变化。建议开关电源输出直接供给数字部分;同时经过LC滤波或者RC滤波,再供给信号调理电路、ADC芯片。在采用LC滤波时,还需要注意LC的谐振频率要远远偏离开关电源工作频率。比如滤波RC电路的电阻R可以取10Ω左右,电容取10μF左右。
4. 其它常规的方法也特别重要,如信号调理电路、ADC芯片的电源和地,要同光耦等数字部分的电源和地分开走线,最后单点连接。或者两者采用两个DC/DC电路分别给ADC芯片等模拟电路和光耦等数字电路供电。原因和上文分析一样,也是为了更好的避免数字、模拟之间电源的相互干扰。
 
版权所有 浙ICP备12028686号 Copyright©2015 MELER All Rights reserved.